<<12345
21.

Let  S={1,2,3.......,9} For k=1,2,...5 , Let Nk be the number of subsets of S, each containing five elements out of which exactly k are odd. Then N1+N2+N3+N4+N5 =


A) 210

B) 252

C) 126

D) 125



22.

Three randomly choosen non negative intergers x,y and z are found to satisfy the equation x+y+z=10 , Then the probability that z is even is 


A) $\frac{1}{2}$

B) $\frac{36}{55}$

C) $\frac{6}{11}$

D) $\frac{5}{11}$



23.

How many 3x3 matrices M with entries from {0,1,2} are there, for which the sum of the diagonal entries of MTM is 5?


A) 198

B) 162

C) 126

D) 135



24.

if y=y(x) satisfies the differential equation

$8\sqrt{x}(\sqrt{9+\sqrt{x}})dy=(\sqrt{4+\sqrt{9+\sqrt{x}}})^{-1}$

dx,x >0 and $y(0)=\sqrt{7}$ , then y(256)=


A) 16

B) 3

C) 9

D) 80



25.

If $f:R\rightarrow R$  is twice differentablr function such that f''(x)>0, for all xε R, and $f(\frac{1}{2})=\frac{1}{2}$ , f(1)=1, then 


A) $f''(1)\leq0$

B) $f'(1)>1$

C) $0\lt f'(1) \le \frac{1}{2}$

D) $\frac{1}{2}\lt f'(1) \le 1$



<<12345